人员定位系统

人员定位及聚集报警,优化巡检,管控现场作业风险

智能化变更管理系统

管控变更风险,优化企业运营

智能化作业许可系统

规范作业许可过程管理,提升工作效率,有效管控作业风险。

双控管理系统

落地化有效运行双重预防机制,落实全员岗位责任制

承包商管理系统

承包商全生命周期管理,持续提升承包商安全绩效

产品展示

PRODUCTS

应用领域

助力企业解决痛点,实现数字化管控

化工企业
Chemical industry
助力化工企业识别、评估和管理风险,提高安全生产水平,降低事故发生的概率
环境保护
Environmental
用于环境风险评估和管理,帮助企业和政府部门了解化工生产对环境的潜在影响,采取相应的预防和控制措施。
应急管理
Emergency
在化工事故发生时提供应急响应和决策支持,帮助企业和政府部门迅速采取有效的措施,降低事故的影响。
监管与合规
Supervision
协助政府监管部门对化工企业进行风险监管和合规检查,提高监管效率和效果。

客户案例

新闻中心

NEWS CENTER

化工换热器的种类辨析与工业应用全解析
2026-02-11 16:51:41
在化工生产中,热量传递是贯穿反应、分离、提纯等核心工艺的关键环节,换热器作为实现这一过程的核心设备,其选型直接影响生产效率、能耗水平与运行稳定性。不同类型的换热器在结构设计、传热机理、工况适配性上存在显著差异,本文将系统梳理化工行业最常用的8类换热器,深入解析其区别与适用场景,为工业选型提供参考。一、管壳式换热器:化工生产的“万能选手”管壳式换热器是化工领域应用最广泛的换热设备,占化工换热装置总量的70%以上,堪称工业换热的“主力军”。其核心结构由圆柱形壳体与内部管束构成,冷热介质分别在管程(管束内部)与壳程(壳体与管束间隙)流动,通过管壁完成热量传递。根据管束固定方式,可细分为固定管板式、浮头式与U型管式三种核心变体:•固定管板式结构最简单,制造成本低,但无热补偿能力,适用于温差小、无剧烈温压波动的工况;•浮头式一端管束可自由伸缩,彻底解决热应力问题,且管束可整体抽出清洗,适配结垢严重、温压波动大的场景;•U型管式仅一端固定,单根管束可单独拆换,耐压性能更优,适合高压介质换热。这类换热器的核心优势在于结构坚固,能承受30~100MPa的高压与-196~800℃的宽温域,介质适应性极强,可通过衬钛、哈氏合金等耐腐材料或加厚管壁应对强腐蚀、强磨蚀工况。尽管总传热系数(100~1000W/(m²・℃))不及紧凑式换热器,但凭借大处理量、易检修的特点,广泛应用于精馏塔再沸器、反应釜换热、合成氨/甲醇高温高压工艺、原油加热冷却等关键场景。二、板式换热器:中低温场景的“效率标杆”板式换热器以极致的传热效率成为中低温低压工况的优选设备,其结构由多片波纹金属板片叠加而成,板片间形成细密的交错流道,冷热介质逆向流动强化传热。工业上常用可拆卸式、焊接式与钎焊式三种类型:可拆卸式依靠密封垫密封,拆装清洗便捷;焊接/钎焊式无密封垫设计,耐温耐压性能更优,但检修难度增加。板式换热器的突出优势是传热效率极高,总传热系数可达3000~6000W/(m²・℃),是管壳式的3~5倍,且结构紧凑,体积仅为管壳式的1/3~1/5,金属耗量大幅降低。但其短板也十分明显:普通密封垫耐温耐压有限(≤150℃/1.6MPa),即便氟橡胶垫也仅能承受250℃/2.5MPa;流道狭窄易被颗粒介质堵塞,结垢后清理难度大。因此,它更适合中低温、低压、清洁无颗粒的介质换热,典型应用包括化工工艺水与循环水换热、稀酸碱溶液温度调节、制冷系统蒸发器/冷凝器,以及食品级化工原料的精密换热。三、螺旋板式换热器:抗结垢的“特色机型”螺旋板式换热器通过两张钢板卷制形成同心螺旋流道,冷热介质分别在两个独立螺旋通道内流动,无流动死角,湍流程度高,从结构上抑制了结垢生成,结垢速率仅为管壳式的1/10。其总传热系数介于管壳式与板式之间(1000~3000W/(m²・℃)),结构紧凑且适配粘滞介质,是化工污水余热回收、重油加热冷却的理想选择。这类换热器的核心劣势在于检修困难,一旦结垢严重无法拆洗,只能整体更换,且耐温耐压有限(≤300℃/4.0MPa),高温下易因热应力导致螺旋板变形。因此,它更适用于中低压、轻微结垢、小批量多品种的工艺场景,如甲醇合成冷却、精馏塔辅助冷凝、有机酸等粘滞介质的换热。四、其他专用换热器:场景化解决方案(一)套管式换热器由同心套管组成,内管与环隙分别通入冷热介质,结构极简,制造安装灵活,可按需切割长度。其最大优势是耐压性能极强,单根套管压力可达100MPa以上,适配高压小流量工况,是化工实验室小试/中试装置、加氢工艺小股高压物料冷却、高温高压合成气小流量换热的专属设备。但处理量小、金属耗量高、占地面积大的短板,限制了其在大型工业装置中的应用。(二)翅片管式换热器通过在基管外焊接翅片增大传热面积(提升5~20倍),专门解决气侧传热系数低的痛点,是气-液、气-气换热的核心设备。工业上常组成空冷器组使用,可节省大量循环水,运行成本低,广泛应用于精馏塔塔顶气相空冷、压缩机出口气冷却、锅炉省煤器、尾气余热回收等场景。但翅片易积灰结垢、不耐强腐蚀的特点,使其忌用在含粉尘、粘性气、强腐蚀气的工况中。(三)沉浸式换热器将管束直接沉浸在反应釜、储罐或料槽中,通过自然对流实现换热,结构简单、成本低廉、操作方便,适合间歇式生产、小批量、对换热速率无要求的场景,如小型聚合反应釜温度控制、化工原料储罐伴热保温、实验室间歇反应换热等。但其传热效率极低(总传热系数≤500W/(m²・℃)),换热速率慢,仅能满足基础换热需求。(四)喷淋式换热器将管束固定在室外框架上,管外喷淋冷却水并配合风机强制通风,通过水的蒸发与对流强化换热,传热效率优于沉浸式(500~1000W/(m²・℃)),耗水量仅为沉浸式的1/3~1/2,是化工厂循环水冷却、工艺热流体室外应急冷却的经济之选。但受环境影响大,冬季易冻结,管束易结垢腐蚀,需配套伴热与清洗装置。(五)板壳式换热器融合板式与管壳式的优势,以波纹板焊接成的板束代替管束,兼具高传热效率(2000~4000W/(m²・℃))与坚固性,耐温耐压可达400℃/10MPa,且抗结垢、检修方便,是管壳式的高端升级替代款。适用于中高温高压、中等处理量、清洁/轻微结垢的介质换热,如大型合成氨/甲醇工艺、精细化工高端原料、制药化工精密控温等场景,但制造成本高、小口径板束易堵塞的问题,使其应用范围相对集中。五、换热器选型核心逻辑与总结化工换热器的选型需围绕温度/压力等级、介质特性(腐蚀性/结垢性/粘滞性)、处理量、相态变化四大核心维度,在传热效率与结构适应性之间寻求平衡:•高温高压(≥300℃/≥10MPa):优先选管壳式(浮头式/U型管式)、套管式;•中低温低压+清洁介质:优先选板式,兼顾效率与经济性;•粘滞/轻微结垢介质:优先选螺旋板式,利用高湍流抗结垢;•气-液/气-气换热:优先选翅片管式空冷器组,强化气侧传热;•高压小流量/实验室:优先选套管式,灵活适配特殊工况;•间歇操作/储罐伴热:优先选沉浸式,控制成本;•室外大流量冷却:优先选喷淋式/翅片管式空冷器,节省水资源。此外,针对强腐蚀介质,各类换热器均可选用钛材、哈氏合金等耐腐材料或衬胶、聚四氟乙烯涂层;含固体颗粒/结垢严重介质则忌用板式,优先选择管壳式(浮头式)、螺旋板式。换热器作为化工生产的“热量桥梁”,其类型选择直接关系到工艺稳定性与能耗水平。掌握各类换热器的结构差异、性能特点与适用场景,结合具体工艺需求精准选型,是实现高效生产、降低运行成本的关键。未来,随着材料技术与制造工艺的升级,换热器将朝着更高效、更耐腐、更紧凑的方向发展,为化工行业绿色低碳转型提供核心支撑。
报警与人员响应作为独立保护层的判定要点
2026-02-09 16:04:44
在过程安全管理体系中,独立保护层(IndependentProtectionLayer,IPL)是防止危险事件升级为事故的关键屏障。报警与人员响应是否可作为有效的IPL,需满足特定的判定要点。若不符合要求,则其可靠性不足,无法承担独立保护功能。因此,明确以“报警和人员响应”作为IPL的判定标准,对于保障工业装置本质安全具有重要意义。 有效性是首要判定条件。报警必须能够准确、及时地识别出偏离正常工况的异常状态,并向操作人员提供清晰、无歧义的信息。例如,高液位报警应在储罐达到设定阈值时立即触发,且信号应区别于其他非关键报警,避免信息淹没。同时,所触发的响应动作必须能有效阻止危险后果的发生,如关闭进料阀、启动泄压系统等。 独立性至关重要。作为IPL,报警与人员响应必须独立于引发初始事件的控制系统或其他保护层。例如,若基本过程控制系统(BPCS)失效导致超压,用于触发人工干预的报警不得依赖同一BPCS中的传感器或逻辑单元,否则将丧失独立性。理想情况下,应采用冗余或不同原理的检测手段来确保报警来源的独立。 可审查性与可验证性。整个报警—响应流程必须具备完整的记录与追溯能力。包括报警时间、内容、操作员确认时间及所采取的具体措施,均应被系统记录并定期审计。此外,该IPL的有效性需通过HAZOP、LOPA等风险评估方法进行量化验证,通常要求其成功概率(PFD)不低于10⁻¹量级,即人员响应成功率需达到90%以上。 人员响应的可行性与时效性。操作人员必须在规定时间内完成正确响应。这要求:(1)操作程序明确、简洁;(2)人员经过充分培训并定期演练;(3)工作负荷合理,确保在报警发生时能立即处理。若响应窗口过短(如少于5分钟),或操作复杂度高,则人员响应难以可靠执行,不应视为有效IPL。 管理保障措施必须到位。企业应建立完善的报警管理制度,包括报警优先级分类、抑制规则、变更控制及绩效指标监控。同时,对涉及IPL的人员响应程序,应纳入操作规程并实施持续改进机制。 综上所述,报警与人员响应只有在满足有效性、独立性、可验证性、时效性及管理保障五大核心要点的前提下,方可被认定为合格的独立保护层。忽视任一条件,都将削弱整体安全屏障的可靠性,增加事故风险。因此,在安全仪表系统设计与风险评估实践中,应审慎判断此类人为干预措施是否真正具备IPL资格。
离心泵安全操作与故障处理
2026-02-03 15:38:11
离心泵作为化工生产中应用最广泛的流体输送设备,其运行稳定性直接关系到生产连续性与安全性。从原料输送到产品调配,离心泵的高效合规操作是保障工艺顺畅、防范设备损坏与安全事故的核心。然而,实际运维中因启动流程不规范、运行监控缺失、故障处置不当等问题,常导致泵体气蚀、轴承烧毁、电机过载等故障,甚至引发介质泄漏、火灾等恶性事故。本文结合化工行业实操规范与设备运行特性,系统梳理离心泵启动、运行、停车、切换的全流程操作要点,详解常见故障成因与处置方法,为现场运维提供实用指南。一、启动操作:筑牢安全运行第一步离心泵启动不当易造成电机过载、泵体气蚀等隐患,必须严格遵循“准备-启动-加载”的规范流程,确保设备平稳投入运行。(一)启动前的全面检查1.设备基础检查:确认机泵与电机安装完毕、电机单体试车合格,地脚螺栓紧固无松动;拆下联轴节罩,按运转方向盘车三圈,检查联轴器同心度,无卡死、异常声响等情况;回装联轴节罩后,进行短时间点试,验证泵旋转方向正确。2.润滑与冷却系统检查:润滑油位需达到油标1/2~2/3处,若出现乳化、变质需立即更换;开启机械密封冲洗液阀(有机械密封的泵)和冷却水阀,确保管路畅通无泄漏。3.管路与仪表检查:关闭泵体及进出口管线导淋阀,确认进出口阀门开关灵活、密封严密;检查压力表、真空表等仪表灵敏有效,打开压力表阀门备用;关闭出口阀,打开进口阀和泵体排气阀,待排气阀排出无气泡液体后,关闭排气阀,完成泵体灌泵。(二)规范启动流程1.联系总控确认工艺条件具备后,按下启动按钮,同时倾听泵与电机运转声音,无杂音、振动正常为合格。2.泵达到额定转速后,观察出口压力稳定,再缓慢打开出口阀,通过调节阀门开度或流量调节阀,将压力、电流控制在工艺指标范围内。3.启动关键注意事项:o严禁泵在出口阀关闭状态下长时间运转(单次不超过3min),避免泵体过热损坏;o进口阀门需全程全开,不得通过调节吸入口阀门控制流量,防止引发气蚀;o新泵初次启动需逐次增加负荷至额定电流,避免瞬间过载;o开启出口阀过程中,若压力突然下降,需立即关闭阀门,待压力恢复后重新缓慢开启。二、运行监控:实时把控设备运行状态离心泵运行期间需落实“勤摸、勤听、勤看、勤检查”原则,实时监控各项指标,及时发现潜在隐患。1.运行状态监控:观察泵与电机运转是否平稳,无异常振动、杂音;用手触摸轴承端盖,温度一般不超过70℃,避免过热烧毁。2.系统参数监控:密切关注出口压力、流量、电机电流变化,保持参数在工艺范围内;电流过大可能是轴承损坏、叶轮卡滞或轴向力平衡装置失效,电流过小则可能是气蚀、流道堵塞或出口阀未全开,需及时排查。3.辅助系统监控:确保冷却水、机械密封冲洗液循环正常,无泄漏、流量充足;润滑油位保持稳定,无乳化、泄漏现象,油杯需清晰可见油位,防止假液位误导。4.环境与安全监控:检查泵房内无异常气味,泵体及管路无介质泄漏;若输送易燃、有毒介质,需同步监测周边气体浓度,防范泄漏风险。三、停车与切换:规范操作避免工况波动离心泵停车与切换需根据生产需求分情况处置,重点把控流量稳定、设备保护,避免因操作不当引发工艺波动或设备损坏。(一)正常停车流程1.联系总控做好停运准备,缓慢关闭泵出口阀,将电机开关旋至“О”位置,观察泵均匀减速至停止。2.按停运后状态分类处置:o备用状态:保持进口阀全开,冷却水正常循环,关闭密封液阀,做好日常巡检;o长期停运:关闭进口阀与压力表阀,待轴承温度降至常温后,切断冷却水、密封液,做好设备防尘防护;o检修状态:关闭进口阀,打开泵体排放阀及自密封排放阀,排尽内部介质,通知电气切断电源,后续开展清洗置换。(二)泵体切换操作要点1.备用泵启动:按启动前检查流程完成备用泵全面检查,启动后待转速、压力稳定(不超过3min),缓慢打开出口阀,调节流量至工艺范围。2.平稳切换:保持出口总管流量稳定,逐渐关小原运行泵出口阀,严禁出现抽空、抢量等情况;待备用泵运行参数稳定后,按正常流程停止原运行泵。3.切换后检查:巡检备用泵运行状态,确认压力、电流、密封情况正常,原运行泵按对应状态做好后续处置。四、维护保养:延长设备寿命的关键举措日常维护保养能有效降低故障发生率,延长离心泵使用寿命,重点做好以下核心工作:1.润滑油管理:新泵运行三个月后更换润滑油,后续按运行工况定期检查,发现乳化、变质立即更换,始终保持油位在1/3~2/3处。2.备用泵维护:冷泵每日盘车一次,每次旋转180°;热泵停车后1小时内每30分钟盘车一次,后续每8小时盘车一次,防止轴系变形;定期对备用泵进行短时间试运行,确保随时可用。3.冬季防护:冬季停运或备用的泵体,需保持冷却水长流水或彻底排空,防止冻裂管道与泵体;做好保温措施,避免润滑油因低温凝固。4.工况适配:避免泵在低于30%标定流量的工况下连续运转,若工艺需求必须低流量运行,需在出口增设旁通管路,保障泵体正常散热。五、常见故障与处置方法离心泵故障多源于操作不当、维护缺失或设备老化,需精准判断成因,采取针对性处置措施,避免故障扩大:异常现象常见成因处置方法泵体振动、有杂音联轴器同心度偏差、地脚螺栓松动、气蚀、轴承损坏、叶轮不平衡停泵校正联轴器同心度,拧紧地脚螺栓;降低吸液高度排除气蚀;更换损坏轴承;清洗叶轮并做平衡找正轴承发热润滑油不足或变质、冷却水流量不足、轴承损坏、泵轴弯曲补充或更换润滑油,增大冷却水量;停泵更换轴承;校正或更换泵轴机械密封/填料泄漏密封件磨损、介质含杂质、密封冲洗液不足停泵检修更换密封件;在吸入管道加装滤网过滤杂质;确保密封冲洗液流量充足泵抽空、不上量启动前未灌满液体、泵内进气、吸入管路堵塞、底阀漏水重新灌泵排气;检查管路密封点,修复漏气部位;清理吸入管路堵塞物;修理或更换底阀流量下降叶轮堵塞、密封环磨损、管路漏气、排出阻力增大停泵清洗叶轮;更换磨损的密封环;检查管路并压紧密封;排查阀门及管路堵塞处并清理出口压力过高排出管路堵塞、压力表失灵检查并疏通排出管路;更换失灵的压力表电机温度过高/电流超限绝缘不良、过载运行、电压过低、泵轴偏移停泵检修电机绝缘;降低泵负荷至额定流量;检查供电电压;校正泵轴与联轴器六、安全操作核心原则1.严禁违规操作:不得用吸入阀调节流量,避免气蚀损坏叶轮;不得长时间关闭出口阀运行,防止泵体过热;2.强化风险预判:输送易燃、易爆、有毒介质时,需提前制定泄漏应急处置方案,现场配备相应防护装备与灭火器材;3.规范记录管理:详细记录启动时间、运行参数、维护情况及故障处置过程,为设备全生命周期管理提供依据;4.人员持证上岗:操作人员需经专业培训,熟悉设备原理、操作流程及应急处置方法,考核合格后方可上岗。结语离心泵的安全稳定运行,离不开规范的操作流程、实时的运行监控与常态化的维护保养。化工企业需将离心泵操作纳入安全管理体系,通过全员培训强化规范意识,以“预防为主、快速处置”为原则,减少故障发生率,保障生产连续与人员安全。唯有将每一个操作细节落到实处,才能让离心泵真正成为化工生产的“可靠助手”。